The repair function of the multifunctional DNA repair/redox protein APE1 is neuroprotective after ionizing radiation.
نویسندگان
چکیده
Although exposure to ionizing radiation (IR) can produce significant neurotoxicity, the mechanisms mediating this toxicity remain to be determined. Previous studies using neurons isolated from the central nervous system show that IR produces reactive oxygen species and oxidative DNA damage in those cells. Because the base excision DNA repair pathway repairs single-base modifications caused by ROS, we asked whether manipulating this pathway by altering APE1 expression would affect radiation-induced neurotoxicity. In cultures of adult hippocampal and sensory neurons, IR produces DNA damage as measured by phosphorylation of histone H2A.X and results in dose-dependent cell death. In isolated sensory neurons, we demonstrate for the first time that radiation decreases the capsaicin-evoked release of the neuropeptide CGRP. Reducing APE1 expression in cultured cells augments IR-induced neurotoxicity, whereas overexpressing APE1 is neuroprotective. Using lentiviral constructs with a neuronal specific promoter that selectively expresses APE1s different functions in neurons, we show that selective expression of the DNA repair competent (redox inactive) APE1 constructs in sensory neurons resurrects cell survival and neuronal function, whereas use of DNA-repair deficient (redox active) constructs is not protective. Use of an APE1 redox-specific inhibitor, APX3330, also facilitates neuronal protection against IR-induced toxicity. These results demonstrate for the first time that the repair function of APE1 is required to protect both hippocampal and DRG neuronal cultures--specifically neuronal cells--from IR-induced damage, while the redox activity of APE1 does not appear to be involved.
منابع مشابه
Functional analysis of tanshinone IIA that blocks the redox function of human apurinic/apyrimidinic endonuclease 1/redox factor-1
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein possessing both DNA repair and redox regulatory activities. It has been shown that blocking redox function leads to genotoxic, antiangiogenic, cytostatic, and proapoptotic effects in cells. Therefore, the selective inhibitors against APE1's redox function can be served as potential pharmaceutical candi...
متن کاملInhibition of the human apurinic/apyrimidinic endonuclease (APE1) repair activity and sensitization of breast cancer cells to DNA alkylating agents with lucanthone.
Cells repair DNA damage via four main mechanisms, however, damage induced by alkylators and oxidative damage is predominantly repaired by the DNA base excision repair (BER) pathway. The AP endonuclease, APE1, is one of the main enzymes in the BER pathway. It is abundant in human cells and accounts for nearly all of the abasic site cleavage activity observed in cellular extracts. APE1 expression...
متن کاملAn APE1 inhibitor reveals critical roles of the redox function of APE1 in KSHV replication and pathogenic phenotypes
APE1 is a multifunctional protein with a DNA base excision repair function in its C-terminal domain and a redox activity in its N-terminal domain. The redox function of APE1 converts certain transcription factors from inactive oxidized to active reduced forms. Given that among the APE1-regulated transcription factors many are critical for KSHV replication and pathogenesis, we investigated wheth...
متن کاملBase excision DNA repair and cancer
Transformed cells can develop drug resistance via repair mechanisms that counteract the DNA damage from chemotherapy or radiation therapy. Disruption of DNA repair pathways can cause mis-repair that is cytotoxic [1]. Specific DNA repair inhibitors might thus be combined with DNA-damaging agents for improved therapy. In addition, some cancer cells have a reduced repertoire of DNA damage response...
متن کاملImplications of apurinic/apyrimidinic endonuclease in reactive oxygen signaling response after cisplatin treatment of dorsal root ganglion neurons.
Peripheral neuropathy is one of the major side effects of the anticancer drug cisplatin. Although previous work suggests that this neuropathy correlates with formation of DNA adducts in sensory neurons, growing evidence suggests that cisplatin also increases the generation of reactive oxygen species (ROS), which could cause DNA damage. Apurinic/apyrimidinic endonuclease/redox factor-1 (Ape1/Ref...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- DNA repair
دوره 10 9 شماره
صفحات -
تاریخ انتشار 2011